Electrical control of the thermodiffusive instability in premixed propane–air flames
نویسندگان
چکیده
This work focuses upon the effects of DC electric fields on the stability of downward propagating atmospheric pressure premixed propane–air flames under experimental conditions that provide close coupling of the electric field to the flame. With the appropriate electrode geometry, modest applied voltages are shown to drive a stable conical flame first into a wrinkled-laminar flamelet geometry, and then further toward either a highly unstable distributed flamelet regime or a collective oscillation of the flame front. Applied potentials up through +5 kV over a 40-mm gap encompassing the flame front have been used to force the above transition sequence in flames with equivalence ratios between 0.8 and 1.3 and flow velocities up to 1.7 m/s. Experiments are reported that characterize the field-induced changes in the geometry of the reaction zone and the structure of the resulting unstable flame. The former is quantified by combustion intensity enhancement estimates derived from high-speed two-dimensional direct and spectroscopic imaging of chemiluminescence signals. The flame fluid mechanical response to the applied field, brought about by forcing positive flame ions counter to the flow, drives the effective flame Lewis number to values suitable for the onset of the thermodiffusive instability, even near stoichiometric conditions. Possible field-driven flame ion recombination chemistry that would produce light reactants near the burner head and precipitate the onset of the thermodiffusive instability is proposed. Electrical measurements are also reported that establish that minimal electrical power input is required to produce the observed flame instabilities. Current continuity-based calculations allow estimates of the level of deficient light reactant necessary to cause the flame to become unstable. This applied-electric-field-induced modification of the thermodiffusive effect could serve as a potentially attractive means of controlling flame fluid-mechanical characteristics and validating combustion instability models over a wide range of equivalence ratios. Published by Elsevier Inc. on behalf of The Combustion Institute.
منابع مشابه
Electrical control of the thermodiffusive instability in premixed propaneâ•fiair flames
This work focuses upon the effects of DC electric fields on the stability of downward propagating atmospheric pressure premixed propane–air flames under experimental conditions that provide close coupling of the electric field to the flame. With the appropriate electrode geometry, modest applied voltages are shown to drive a stable conical flame first into a wrinkled-laminar flamelet geometry, ...
متن کاملExperimental study of spinning combustion in a mesoscale divergent channel
Quasi-steady and unsteady propagations of methane and propane–air premixed flames in a mesoscale divergent channel were investigated experimentally and theoretically. The emphasis was the impact of variable cross-section area and the flame-wall coupling on the flame transition between different regimes and the onset of flame instability. Experimentally, for the first time, spinning flames were ...
متن کاملPremixed flames propagating freely in tubes
This paper reports an experimental investigation of premixed propane and methane-air flames propagating freely in tubes 1.5 m long and with diameters 54 and 94 mm. Two regimes of propagation are distinguished by correlating the flame speed and the radius of curvature at the flame tip. The characteristic lengths are then related to the cut-off wavelengths estimated from linear theories and compa...
متن کاملThe Determination of Temperature in Methane-Air, Propane-Air and Butane-Air Flames Using the Raman Q-Branch Spectra of Nitrogen
The unresolved Q-branch profiles in the Raman spectra of' nitrogen in premixed, laminar, methane-air, propane-air and butane-air flames with lean to stoichiometric fuel-air equivalence ratios have been recorded experimentally and used to determine flame temperature s with a precision of about 10f0using an iterative computer program which fitted calculated nitrogen spectra to the experimentally ...
متن کاملPremixed flame ignition by transient plasma discharges
Flame ignition by short-duration (≈ 50 ns) transient plasma, or corona, discharges was investigated for methane-air, propane-air and butane-air mixtures at atmospheric and elevated pressures. Such discharges produce a larger fraction of high-energy electrons, yield more spatially distributed energy and deposit energy in the gas more efficiently than conventional arc discharges do. We show that ...
متن کامل